Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 136

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Standard guideline for the seismic response analysis method using three-dimensional finite element model of reactor buildings (Contract research) (Translated document)

Choi, B.; Nishida, Akemi; Kawata, Manabu; Shiomi, Tadahiko; Li, Y.

JAEA-Research 2024-001, 206 Pages, 2024/03

JAEA-Research-2024-001.pdf:9.12MB

In the assessment of seismic safety and the design of building structures in nuclear facilities, lumped mass models have been used as standard methods. Recent advances in computer capabilities allow the use of three-dimensional finite element (3D FE) models to account for the 3D behavior of buildings, material nonlinearity, and the nonlinear soil-structure interaction effect. While 3D analysis method has many advantages, it is necessary to ensure its reliability as a new approach. The International Atomic Energy Agency performed an international benchmark study using the 3D FE analysis model for reactor building of Unit 7 at TEPCO's Kashiwazaki-Kariwa Nuclear Power Station based on recordings from the Niigataken Chuetsu-oki Earthquake in 2007. Multiple organizations from different countries participated in this study and the variation in their analytical results was significant, indicating an urgent need to improve the reliability of the analytical results by standardization of the analytical methods using 3D FE models. Additionally, it has been pointed out that it is necessary to understand the 3D behavior in the seismic fragility assessment of buildings and equipment, using realistic seismic response analysis method based on 3D FE models. In view of these considerations, a guideline for the seismic response analysis method using a 3D FE model was developed by incorporating the latest knowledge and findings in this area. The purpose of the guideline is to improve the reliability of the seismic response analysis method using 3D FE model of reactor buildings. The guideline consists of a main body, commentaries, and appendixes. The standard procedures, recommendations, key points to note, and technological bases for conducting seismic response analysis on reactor buildings using 3D FE models are provided in the guideline. In addition, the guideline will be revised reflecting the latest knowledge.

Journal Articles

Development of new containment tents for rapid worker evacuation from the workspace in emergencies at plutonium fuel handling facilities

Shibanuma, Tomohiro; Hirano, Hiroshi*; Kimura, Yasuhisa; Aita, Takahiro; Yoshida, Masato; Nagai, Yuya; Kitamura, Akihiro

Hoken Butsuri (Internet), 58(2), p.91 - 98, 2023/08

We developed new containment tents that are more easily assembled and effectively functioned, by improving and refurbishing the shortcomings of the conventional tents. The new tents have been already tested in the real airborne contamination situation occurred at the plutonium fuel fabricating facility. The tents appropriately functioned for intended use but other shortcomings emerged and therefore we had modified the structure of the tents further.

Journal Articles

Efforts for appropriate responses to safeguards activities, 1; Overview

Aoki, Rie; Shirafuji, Masaya; Nozaki, Teo; Akutsu, Narumi*; Miyaji, Noriko; Nakamura, Hironobu

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 7 Pages, 2023/05

Journal Articles

Mental health measures for the staff of nuclear research and development institution mobilized in dealing with residents during the nuclear disaster caused by the Great East Japan Earthquake

Tomotsune, Yusuke; Yajima, Mayumi; Okuno, Hiroshi; Yamamoto, Kazuya

Rodo Anzen Eisei Kenkyu, 16(1), p.29 - 43, 2023/02

During the first year of the accident at the Fukushima Daiichi Nuclear Power Station caused by the Great East Japan Earthquake in March 2011, a total of about 45,000 employees of Japan Atomic Energy Agency (JAEA) left their original workplaces to engage in telephone counseling, assistance of temporary return, and environmental monitoring. In particular, the staff who worked on the telephone counseling service, which directly contacted the residents, suffered from the stress associated with emotional labor. Systematic mental health care to the staff who engaged in these tasks was provided them in the Nuclear Fuel Cycle Engineering Laboratories of the JAEA. This paper considers this activity as a concrete example of "support for supporters" and discusses the mental health of the staff who provide support to the residents in a nuclear disaster.

Journal Articles

Preliminary deformation analysis of the reactor vessel due to core debris accumulation onto the reactor vessel bottom for sodium-cooled fast reactor

Onoda, Yuichi; Yamano, Hidemasa

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 9 Pages, 2022/10

In Japan, sodium-cooled fast reactor design takes In-Vessel Retention (IVR) strategy to stably cool damaged core materials in the reactor vessel during a severe accident with various design measures. Although a possibility to fail IVR is extremely low, a probabilistic risk assessment study needs a wide variety of scenarios including the IVR failure. Therefore, in order to study a wide range of event spectra related to stable cooling of debris in the reactor vessel, this study numerically investigated the deformation and failure behavior of the reactor vessel due to the debris deposited onto the skirt of the core catcher using the FINAS-STAR structural analysis code. The analyses are conducted in two cases of power density with the aim of investigating failure conditions of the bottom of the reactor vessel. Reactor vessel deforms significantly when the temperature reaches about 1100 $$^{circ}$$C and the reactor vessel reaches the failure criteria in high-power-density case.

Journal Articles

Identification of the reactor building damage mode for seismic fragility assessment using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Transactions of the 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 10 Pages, 2022/07

In order to improve the seismic probabilistic risk assessment method, the authors are developing methods related to realistic response, realistic resistance and fragility assessment for buildings and equipment that are important for seismic safety. In this study, in order to identify of building damage mode subjected to large seismic motions, pushover analyses using multiple analysis codes were performed using a 3D FE model of a reactor building. We obtained the analysis results for the identification of local damage mode that contributes to the fragility assessment. In this paper, we report the progress of local damage mode and ultimate strength of the building by the pushover analysis. We also compared this result with the seismic response analysis results.

Journal Articles

Boundary condition free homogenization and evaluation of its performance in fast reactor core analysis

Maruyama, Shuhei

Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05

This paper proposes a new homogenization method, "Boundary Condition Free Homogenization (BCFH)". The traditional homogenization method separates the core calculation and the cell (assembly) calculation by assuming a specific boundary condition or a peripheral region in the cell calculation. Nevertheless, there are ambiguities and approximation in these assumptions, and they can also cause a decline in accuracy. BCFH aims to avoid these problems and improve the accuracy in the cell calculation such as homogenization. We imposed the conditions that the physical quantities in the cell related to the reaction rate preservation is preserved for any incoming partial current, during the homogenization. That is, the response matrices of cell average (or total) flux and outgoing partial current, to be the same form between heterogeneous and homogeneous system. As a result, homogenized parameters, such as cross-sections, superhomgenization factors, and discontinuity factors, are no longer dependent on a specific boundary condition. The new homogenized parameters obtained in this way are extended from the conventional vector form to the matrix form in BCFH. To investigate the performance of BCFH, numerical tests are done for the simplified models which originates in 750MW-class sodium-cooled fast reactor with MOX fuel core in Japan. It is found that BCFH is particularly effective in evaluating control rod reactivity worth and reaction rate distribution, compared to the traditional method. We conclude that the BCFH can be a promising homogenization concept for core neutronic analysis.

JAEA Reports

Standard guideline for the seismic response analysis method using 3D finite element model of reactor buildings (Contract research)

Choi, B.; Nishida, Akemi; Kawata, Manabu; Shiomi, Tadahiko; Li, Y.

JAEA-Research 2021-017, 174 Pages, 2022/03

JAEA-Research-2021-017.pdf:9.33MB

Standard methods such as lumped mass models have been used in the assessment of seismic safety and the design of building structures in nuclear facilities. Recent advances in computer capabilities allow the use of three-dimensional finite element (3D FE) models to account for the 3D behavior of buildings, material nonlinearity, and the nonlinear soil-structure interaction effect. Since the 3D FE model enables more complex and high-level treatment than ever before, it is necessary to ensure the reliability of the analytical results generated by the 3D FE model. Guidelines for assuring the dependability of modeling techniques and the treatment of nonlinear aspects of material properties have already been created and technical certifications have been awarded in domains other than nuclear engineering. The International Atomic Energy Agency performed an international benchmark study in nuclear engineering. Multiple organizations reported on the results of seismic response studies using the 3D FE model based on recordings from the Niigata-ken Chuetsuoki Earthquake in 2007. The variation in their analytical results was significant, indicating an urgent need to improve the reliability of the analytical results by standardization of the analytical methods using 3D FE models. Additionally, it has been pointed out that it is necessary to understand the 3D behavior in the seismic fragility assessment of buildings and equipment, which requires evaluating the realistic nonlinear behavior of building facilities when assessing their seismic fragility. In view of these considerations, a standard guideline for the seismic response analysis method using a 3D FE model was produced by incorporating the latest knowledge and findings in this area. The purpose of the guideline is to improve the reliability of the seismic response analysis method using 3D FE model of reactor buildings. The guideline consists of a main body, commentaries, and appendixes; it also provides standard procedures

Journal Articles

Applicability of equivalent linear analysis to reinforced concrete shear walls; 3D FEM simulation of experiment results of seismic wall ultimate behavior

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Horiguchi, Tomohiro*; Choi, B.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 21(1), p.1 - 14, 2022/03

In this study, we aim to approximately evaluate the effect of nonlinearity of reinforced concrete structures through seismic response analysis using the equivalent linear analysis method. A simulation analysis was performed for the ultimate response test of the shear wall of the reactor building used in an international competition by OECD/NEA in 1996. The equivalent stiffness and damping of the shear wall were obtained from the trilinear skeleton curves proposed by the Japan Electric Association and the hysteresis curves proposed by Cheng et al. The dominant frequency, maximum acceleration response, maximum displacement response, inertia force-displacement relationship, and acceleration response spectra of the top slab could be simulated well up to a shear strain of approximately $$gamma$$=2.0$$times$$10$$^{-3}$$. The equivalent linear analysis used herein underestimates the maximum displacement response at the time of ultimate fracture of approximately $$gamma$$=4.0$$times$$10$$^{-3}$$. Moreover, the maximum shear strain of the shear wall could not capture the locally occurring shear strain compared with that of the nonlinear analysis. Therefore, when employing this method to evaluate the maximum shear strain and test results, including those during the sudden increase in displacement immediately before the fracture, sufficient attention must be paid to its applicability.

JAEA Reports

Consideration on utilization of atmospheric dispersion models for a nuclear emergency preparedness and response

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori; Nagai, Haruyasu

JAEA-Review 2021-021, 61 Pages, 2021/11

JAEA-Review-2021-021.pdf:3.72MB

Triggered by the Fukushima Daiichi Nuclear Power Station accident, there have been a lot of arguments among various situations and levels about utilization of atmospheric dispersion models for a nuclear emergency preparedness and response. Most of these arguments, however, were alternative and extreme discussions on whether predictions by computational models could be applied or not for protective measures in a nuclear emergency, and it was hard to say that these arguments were politely conducted, based on scientific verification in an emergency response. It was known, on the other hand, that there were not a few potential users of atmospheric dispersion models and/or calculation results by the models within the Japan Atomic Energy Agency (JAEA) and outside. However, they seemed to have a lack of understanding and a misunderstanding on proper use of different kinds of atmospheric dispersion models. This report compares an outline of models and calculation method in atmospheric dispersion models for a nuclear emergency preparedness and response, with a central focus on the models which have been developed and used in the JAEA. Examples of calculations by these models are also described in the report. This report aims at contributing to future consideration and activities for potential users of atmospheric dispersion models within the JAEA and outside.

Journal Articles

Outline of guideline for seismic response analysis method using 3D finite element model of reactor building

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08

In the seismic safety assessment of building structures in nuclear facilities, lumped mass models are conventionally used. However, they cannot possess the required high-accuracy evaluation of nuclear facilities, such as the local response at the equipment location in a reactor building. In this point of view, a seismic response analysis method using a three-dimensional finite element (3D FE) model is indispensable. Although, it has been reported that the analysis results obtained using 3D FE models vary greatly depending on the experience and knowledge of analysts, the quality of analysis results should be insured by developing a standard analysis method. In the Japan Atomic Energy Agency, we have developed a guideline for seismic response analysis methods that adopt 3D FE models of reactor buildings. The guideline consists of a main body, commentary, and several supplements; it also includes procedures, recommendations, points of attention, and a technical basis for conducting seismic response analysis using 3D FE models of reactor buildings. In this paper, the outline of the guideline and analysis examples based on the guideline are presented.

Journal Articles

Early emergency responses of the Japan Atomic Energy Agency against the Fukushima Daiichi Nuclear Power Station Accident in 2011

Okuno, Hiroshi; Sato, Sohei; Kawakami, Takeshi; Yamamoto, Kazuya; Tanaka, Tadao

Journal of Radiation Protection and Research, 46(2), p.66 - 79, 2021/06

The nuclear accident at the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Company (TEPCO) was a typical one of the disastrous damages that induced evacuation of the residents around the NPS, which was triggered by the hugest earthquake and associated tsunami. This paper summarized early responses of the Japan Atomic Energy Agency (JAEA), especially of its Nuclear Emergency Assistance and Training Center (NEAT) to the off-site emergencies associated with the TEPCO's Fukushima Daiichi NPS. The paper addressed activities of emergency preparedness of the NEAT before 2011 in relevant to the TEPCO's Fukushima Daiichi NPS, the situation of the NEAT on March 11, 2011, and its early responses to the related off-site emergencies including those caused by the accident at the TEPCO's Fukushima Daiichi NPS. The paper also discussed issues associated with complex disasters.

JAEA Reports

Investigation and consideration on evaluation of radiation doses to residents in the case of a nuclear emergency

Hashimoto, Makoto; Kinase, Sakae; Munakata, Masahiro; Murayama, Takashi; Takahashi, Masa; Takada, Chie; Okamoto, Akiko; Hayakawa, Tsuyoshi; Sukegawa, Masato; Kume, Nobuhide*; et al.

JAEA-Review 2020-071, 53 Pages, 2021/03

JAEA-Review-2020-071.pdf:2.72MB

In the case of a nuclear accident or a radiological emergency, the Japan Atomic Energy Agency (JAEA), as a designated public corporation assigned in the Disaster Countermeasures Basic Act and the Armed Attack Situation Response Law, undertakes technical supports to the national government and local governments. The JAEA is requested to support to evaluate radiation doses to residents in a nuclear emergency, which is specified in the Basic Disaster Management Plan and the Nuclear Emergency Response Manual. For the dose evaluation, however, its strategy, target, method, structure and so on have not been determined either specifically or in detail. This report describes the results of investigation and consideration discussed in the "Working Group for Radiation Dose Evaluation at a Nuclear Emergency" established within the Nuclear Emergency Assistance and Training Center to discuss technical supports for radiation dose evaluation to residents in the case of a nuclear emergency, and aims at contributing to specific and detailed discussion and activities in the future for the national government and local governments, also within the JAEA.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Outline of Regional Workshops held in 2006 - 2017 by the International Atomic Energy Agency in the proposal of Nuclear Emergency Preparedness Group of the Asian Nuclear Safety Network

Okuno, Hiroshi; Yamamoto, Kazuya

JAEA-Review 2020-066, 32 Pages, 2021/02

JAEA-Review-2020-066.pdf:3.01MB

The International Atomic Energy Agency (abbreviated as IAEA) has been implementing the Asian Nuclear Safety Network (abbreviated as ANSN) activities since 2002. As part of this effort, Topical Group on Emergency Preparedness and Response (abbreviated as EPRTG) for nuclear or radiation disasters was established in 2006 under the umbrella of the ANSN. Based on the EPRTG proposal, the IAEA conducted 23 Asian regional workshops in the 12 years from 2006 to 2017. Typical topical fields of the regional workshops were nuclear emergency drills, emergency medical care, long-term response after nuclear/radiological emergency, international cooperation, national nuclear disaster prevention system. The Japan Atomic Energy Agency has produced coordinators for EPRTG since its establishment and has led its activities since then. This report summarizes the Asian regional workshops conducted by the IAEA based on the recommendations of the EPRTG.

JAEA Reports

Design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities

Tsubaki, Hirohiko; Koizumi, Satoshi*

JAEA-Technology 2020-016, 16 Pages, 2020/11

JAEA-Technology-2020-016.pdf:2.96MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to train operators from every nuclear facility in JAEA to control crawler-type robots, and so on. A driving training of a crawler-type robot used a reciprocating passage (U-shaped passage look from above) is one of the important training programs. The section always assembled a reciprocating passage with borrowed parts from other sections for every training of being used the passage. The section designed and produced training-way system included a reciprocating passage with stairs in 2019 fiscal year. The system makes the section members labor-saving, possible to set any time for training and diverse training-ways with easy assembling system. This report shows design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities by Maintenance and Operation Section for Remote Control Equipment.

JAEA Reports

Registration and related activities of the Japan Atomic Energy Agency for the response and assistance network of the International Atomic Energy Agency

Togawa, Orihiko; Hayakawa, Tsuyoshi; Tanaka, Tadao; Yamamoto, Kazuya; Okuno, Hiroshi

JAEA-Review 2020-017, 36 Pages, 2020/09

JAEA-Review-2020-017.pdf:2.24MB

In 2010, the government of Japan joined the Response and Assistance Network (RANET) of the International Atomic Energy Agency (IAEA), in order to contribute to offering international assistance in the case of a nuclear accident or radiological emergency. At that occasion, the Japan Atomic Energy Agency (JAEA) was registered as the National Assistance Capability (NAC) having resources capable of the External Based Support (EBS) in the following seven areas: (1) aerial survey, (2) radiation monitoring, (3) environmental measurements, (4) assessment and advice, (5) internal dose assessment, (6) bioassay and (7) dose reconstruction. After the registration, three inquiries were directed to the JAEA about a possibility of its support. However, the JAEA's assistance has not eventually been realized. On the other hand, the JAEA participated almost every year in the international Convention Exercise (ConvEx) carried out by the IAEA in connection with RANET. This report describes an outline of the RANET and related activities of the JAEA for RANET registration and participation in the ConvEx.

JAEA Reports

Design and mounting advanced wireless communication equipment on the crawler-type robots for tasks and on the crawler-type scouting robot

Nishiyama, Yutaka; Iwai, Masaki; Tsubaki, Hirohiko; Chiba, Yusuke; Hayasaka, Toshiro*; Ono, Hayato*; Hanyu, Toshinori*

JAEA-Technology 2020-006, 26 Pages, 2020/08

JAEA-Technology-2020-006.pdf:2.43MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to remodel crawler-type robots for tasks, crawler-type scouting robots, and so on. About two crawler-type robots for tasks, the section designed and mounted advanced wireless communication equipment on manipulators mounted on the two robots. The crawler part of the robot has been able to be controlled by way of the new equipment, and when it is broken down, it can be changed by way of an original equipment. And the new equipment makes a single relay robot controllable both the crawler part and the manipulator part of the robot, in case of wireless relay robots being needed. And after checking the ability and characteristic about 5 wireless communication equipment, the section chose and mounted the best equipment on one crawler-type scouting robot. This report shows design and mounting advanced wireless communication equipment on the two crawler-type robots for tasks and on the one crawler-type scouting robot.

Journal Articles

Gamma detector response simulation inside the pedestal of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi; Matsumura, Taichi; Sakamoto, Masahiro

Mechanical Engineering Journal (Internet), 7(3), p.19-00543_1 - 19-00543_8, 2020/06

Journal Articles

Evaluation of the effects of differences in building models on the seismic response of a nuclear power plant structure

Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Takada, Tsuyoshi*

Nihon Jishin Kogakkai Rombunshu (Internet), 20(2), p.2_1 - 2_16, 2020/02

AA2018-0122.pdf:2.15MB

no abstracts in English

136 (Records 1-20 displayed on this page)